1. Mariska made 4 quilts to sell at the craft fair. She used 2 different colors of fabric squares. The design for one quilt is shown below.

If the same design was used for all the quilts, how many total fabric squares did Mariska use?

A. 80 squares
B. 20 squares
C. 24 squares
D. 8 squares

2. Jack picked 90 blueberries from the orchard. He put 10 blueberries in each basket. Then, he sold each basket for $2. If Jack sold all the baskets, how much money did he make?

F. $20
H. $18
G. $180
J. $450

3. Rachel counted the change in her purse. She had 4 nickels and 7 dimes. How much money did Rachel have in her purse?

A. $0.75
B. $0.11
C. $0.80
D. $0.90

4. Samantha and Josephine are having a party. The picture shows the number of cookies each girl brought to the party.

Four other girls will attend the party. If all the girls at the party share the cookies equally, how many cookies will each girl receive?

F. 3 cookies
H. 6 cookies
G. 2 cookies
J. 72 cookies
5. Yolanda drinks 63 ounces of water every single day. How many ounces of water does Yolanda drink in one week?

- A 315 ounces
- B 441 ounces
- C 9 ounces
- D 12 ounces

6. Each of the third-grade classes at Glover Elementary School donated 24 canned goods to families in the community. If there are 6 third grade classes, how many cans of food were donated?

- F 144 cans
- G 4 cans
- H 30 cans
- J 18 cans

7. Alana had 18 cherries. She split the cherries evenly among 9 ice cream sundaes. How many cherries did Alana put on each sundae?

- A 162 cherries
- B 27 cherries
- C 9 cherries
- D 2 cherries

8. Mr. Santiago’s third grade class went on a field trip. He bought four 12-pack bottles of juice and put them equally into 6 different coolers. How many bottles of juice did Mr. Santiago put in each cooler?

- F 3 bottles
- G 4 bottles
- H 2 bottles
- J 8 bottles

9. Flamur and his two friends decorated these donuts to take home to their families.

If they share them equally, how many will each kid be able to take home?

- A 15 donuts
- B 4 donuts
- C 36 donuts
- D 6 donuts
<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Rationales</th>
</tr>
</thead>
</table>
| 1 | 3.4(K) | **A** To determine the total number of fabric squares, the student should identify how many squares were used to make one quilt, which according to the design shown, was 20. They should then multiply that number (20), by 4, since she made 4 quilts. That would result in 80 total fabric squares.
B The student likely only calculated how many fabric squares were used to make one quilt.
C The student likely added the number of squares in one quilt to the number of quilts Mariska made, instead of multiply.
D The student likely multiplied the 2 from the two different colors she used, instead of the 20 from the 20 squares on each quilt, by the 4 quilts Mariska made. |
| 2 | 3.4(K) | **F** The student likely multiplied the 10 blueberries by the $2.
G The student likely multiplied the 90 blueberries by the $2.
H To determine the amount of money Jack made on the baskets, the student should have first divided the 90 blueberries into the groups of 10, which equals 9 baskets. The student then should have multiplied the 9 baskets by the $2 each, resulting in $18.
J The student likely multiplied the 90 blueberries by the 10 blueberries, and then divided by the $2. |
| 3 | 3.4(K) | **A** The student likely confused the values of a nickel and a dime, using 10 cents for each nickel and 5 cents for each dime.
B The student likely added the 4 nickels to the 7 dimes, counting the coins, without regard for the value of the coins.
C The student likely missed counting one of the dimes, or two of the nickels.
D To determine how much money Rachel had in her purse, the student should have multiplied 4 nickels times 5, since nickels are worth 5 cents each, and then added that to 7 times 10, since there were 7 dimes and each dime is worth 10 cents, resulting in an answer of 90 cents. |
| 4 | 3.4(K) | **F** The student divided the 12 cookies by the 4 other girls that attended the party, but did not count Samantha and Josephine.
G To determine how many cookies each girl would receive, the student should have first combined the number of cookies, $4 + 8 = 12$, and then divide by how many girls are sharing the cookies $12 \div 6 = 2$.
H The student likely divided the 12 cookies among Samantha and Josephine, not considering the other four girls that attended the party.
J The student likely multiplied the 12 cookies by the 6 total girls that attended the party. |
<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.4(G)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>3.4(G)</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>7</td>
<td>3.4(F)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>8</td>
<td>3.4(K)</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>9</td>
<td>3.4.K</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>